40 research outputs found

    CIPRO 2.5: Ciona intestinalis protein database, a unique integrated repository of large-scale omics data, bioinformatic analyses and curated annotation, with user rating and reviewing functionality

    Get PDF
    The Ciona intestinalis protein database (CIPRO) is an integrated protein database for the tunicate species C. intestinalis. The database is unique in two respects: first, because of its phylogenetic position, Ciona is suitable model for understanding vertebrate evolution; and second, the database includes original large-scale transcriptomic and proteomic data. Ciona intestinalis has also been a favorite of developmental biologists. Therefore, large amounts of data exist on its development and morphology, along with a recent genome sequence and gene expression data. The CIPRO database is aimed at collecting those published data as well as providing unique information from unpublished experimental data, such as 3D expression profiling, 2D-PAGE and mass spectrometry-based large-scale analyses at various developmental stages, curated annotation data and various bioinformatic data, to facilitate research in diverse areas, including developmental, comparative and evolutionary biology. For medical and evolutionary research, homologs in humans and major model organisms are intentionally included. The current database is based on a recently developed KH model containing 36 034 unique sequences, but for higher usability it covers 89 683 all known and predicted proteins from all gene models for this species. Of these sequences, more than 10 000 proteins have been manually annotated. Furthermore, to establish a community-supported protein database, these annotations are open to evaluation by users through the CIPRO website. CIPRO 2.5 is freely accessible at http://cipro.ibio.jp/2.5

    Phylogenetic comparisons reveal mosaic histories of larval and adult shell matrix protein deployment in pteriomorph bivalves

    Get PDF
    Molluscan shells are organo-mineral composites, in which the dominant calcium carbonate is intimately associated with an organic matrix comprised mainly of proteins and polysaccharides. However, whether the various shell matrix proteins (SMPs) date to the origin of hard skeletons in the Cambrian, or whether they represent later deployment through adaptive evolution, is still debated. In order to address this issue and to better understand the origins and evolution of biomineralization, phylogenetic analyses have been performed on the three SMP families, Von Willebrand factor type A (VWA) and chitin-binding domain-containing protein (VWA-CB dcp), chitobiase, and carbonic anhydrase (CA), which exist in both larval and adult shell proteomes in the bivalves, Crassostrea gigas and Pinctada fucata. In VWA-CB dcp and chitobiase, paralogs for larval and adult SMPs evolved before the divergence of these species. CA-SMPs have been taken as evidence for ancient origins of SMPs by their presumed indispensable function in biomineralization and ubiquitous distribution in molluscs. However, our results indicate gene duplications that gave rise to separate deployments as larval and adult CA-SMPs occurred independently in each lineage after their divergence, which is considerably more recent than hitherto assumed, supporting the "recent heritage and fast evolution" scenario for SMP evolution

    CIPRO 2.5: Ciona intestinalis Protein integrated database with large-scale omics data, bioinformatic analyses and curated annotation, with ability for user rating and comments

    Get PDF
    CIPRO database is an integrated protein database for a tunicate species Ciona intestinalis that belongs to the Urochordata. Although the CIPRO database deals with proteomic and transcriptomic data of a single species, the animal is considered unique in the evolutionary tree, representing a possible origin of the vertebrates and is a good model for understanding chordate evolution, including that of humans. Furthermore, C. intestinalis has been one of the favorites of developmental biologists; there exists a huge amount of accumulated knowledge on its development and morphology, in addition to the recent genome sequence and gene expression data. The CIPRO database is aimed at not only collecting published data, but also presenting unique information, including the unpublished transcriptomic and proteomic data and human curated annotation, for the use by researchers in broad research fields of biology and bioinformatics

    Dual Gene Repertoires for Larval and Adult Shells Reveal Molecules Essential for Molluscan Shell Formation

    Get PDF
    Molluscan shells, mainly composed of calcium carbonate, also contain organic components such as proteins and polysaccharides. Shell organic matrices construct frameworks of shell structures and regulate crystallization processes during shell formation. To date, a number of shell matrix proteins (SMPs) have been identified, and their functions in shell formation have been studied. However, previous studies focused only on SMPs extracted from adult shells, secreted after metamorphosis. Using proteomic analyses combined with genomic and transcriptomic analyses, we have identified 31 SMPs from larval shells of the pearl oyster, Pinctada fucata, and 111 from the Pacific oyster, Crassostrea gigas. Larval SMPs are almost entirely different from those of adults in both species. RNA-seq data also confirm that gene expression profiles for larval and adult shell formation are nearly completely different. Therefore, bivalves have two repertoires of SMP genes to construct larval and adult shells. Despite considerable differences in larval and adult SMPs, some functional domains are shared by both SMP repertoires. Conserved domains include von Willebrand factor type A (VWA), chitin-binding (CB), carbonic anhydrase (CA), and acidic domains. These conserved domains are thought to play crucial roles in shell formation. Furthermore, a comprehensive survey of animal genomes revealed that the CA and VWA-CB domain-containing protein families expanded in molluscs after their separation from other Lophotrochozoan linages such as the Brachiopoda. After gene expansion, some family members were co-opted for molluscan SMPs that may have triggered to develop mineralized shells from ancestral, nonmineralized chitinous exoskeletons

    Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota

    Get PDF
    Mammalian gut microbiota are integral to host health. However, how this association began remains unclear. We show that in basal chordates the gut space is radially compartmentalized into a luminal part where food microbes pass and an almost axenic peripheral part, defined by membranous delamination of the gut epithelium. While this membrane, framed with chitin nanofibers, structurally resembles invertebrate peritrophic membranes, proteome supports its affinity to mammalian mucus layers, where gut microbiota colonize. In ray-finned fish, intestines harbor indigenous microbes, but chitinous membranes segregate these luminal microbes from the surrounding mucus layer. These data suggest that chitin-based barrier immunity is an ancient system, the loss of which, at least in mammals, provided mucus layers as a novel niche for microbial colonization. These findings provide a missing link for intestinal immune systems in animals, revealing disparate mucosal environment in model organisms and highlighting the loss of a proven system as innovation

    ホヤ ボセイ イデンシ ノ モウラテキ カイセキ : 2シュ ノ ホヤ ニ オケル pem - like イデンシグン ノ ドウテイ ト カイセキ

    No full text
    京都大学0048新制・課程博士博士(理学)甲第12156号理博第3050号新制||理||1454(附属図書館)23992UT51-2006-J149京都大学大学院理学研究科生物科学専攻(主査)教授 佐藤 矩行, 教授 米井 脩治, 教授 片山 一道学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDA
    corecore